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The thermodynamics of curved boundary layers, with the assumption that 
the distance between the surface of a fluid cavity and its surface of tension 
is a quadratic function of the cavity radius, is applied to the exact thermo- 
dynamic expression for G, the central function of scaled particle theory. 
The coefficients in the quadratic representation are determined so as to satisfy 
all five of the known exact conditions on G valid for cavity radii between 
one-half and one molecular diameter. The results of the calculation are 
displayed as the hard-sphere equation of state, the boundary tension as- 
sociated with the surface of tension, and the distance between the cavity 
surface and the surface of tension. Although the hard-sphere equation of 
state obtained by this method using all five conditions on G is more accurate 
than in the case where only two or three conditions are used, the original 
scaled particle theory, in which G itself was represented simply by a quadratic 
function of inverse powers of cavity radius, still yields the more accurate 
equation of state. Nevertheless, the present approach limits approximations 
to the distance between the cavity surface and the surface of tension, a small 
quantity in itself. The path to a still more improved theory remains well 
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defined, contingent upon the discovery of additional exact conditions, and 
does not depend, as in the original scaled particle theory, on a form for G 
arrived at in a somewhat ad hoc manner. 

KEY WORDS: Statistical thermodynamics of curved boundary layers; 
scaled particle theory; equation of state; cycle equation; fluid-solid phase 
transition. 

1. I N T R O D U C T I O N  

It  has previously been established that through treatment of boundary 
effects in the vicinity of a microscopic spherical cavity, m the thermo- 
dynamics C2) and statistical thermodynamics (8,4) of curved boundary layers 
can be applied to the scaled particle theory of hard-sphere fluids/5~ In addition 
to the equation of state, the location of the surface of tension (SOT) and 
the boundary tension associated with the SOT are obtained as functions of 
cavity radius and the density3 4~ With this approach, a physical assumption 
different from that originally introduced in scaled particle theory is used. 
The purpose of the present work is to fully test this alternative assumption 
using all of the applicable exact scaled particle theory conditions. 

Originally, it was assumed that G, the central function of scaled particle 
theory, defined by 

fO g6 W(x, y ) / kT  ----- 24y ~ZG(~, y) d~ (1) 

(where W is the reversible work required to produce a cavity of radius ax in a 
fluid of hard-sphere particles of diameter a, number density 6yfira 3, and 
absolute temperature T, with k the Boltzmann constant), could be expanded 
as(1,5) 

G(~, y) = ~_~ Gn(y)(~-l) n (2) 
7Z~O 

The form of this expansion was based on what is now known 12,a~ to be 
somewhat erroneous thermodynamic reasoning, and on the assumption 
that G is analytic in ~ for ~ > 1/2 (not rigorously true). Various exact 
conditions on G(~, y) can then be used to determine several of the {G,} and 
hence an approximate equation of state from the exact relation 

r = y @ 4y2G(l, y) (3) 

where 6kTd?fira 3 is the fluid pressure in the system far from the cavity wall. 
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The exact conditions on G(~, y) are 

G(1/2, y) = 1/(1 --  y) 

aG(1/2, y)/a~ = 6y/(1 -- y)2 

(4) 

(5) 

where 

2 
P = u  0-~ ~ -- - ~  (11) 

and 

q = --pu (12) 

Other exact equation (cycle equation, 110~,4~ compressibility equation, ~41 and 
boundary analog of the Gibbs adsorption equation {2)) are also available but 

2 For a different approach also leading to the result Ga(y) = 0, see Stillinger and Cotter. ~s~ 

G(~ ,  y) = 1 + 4yG(l, y) (7) 

which is a connection between G(~ ,  y) and G(1, y); and 

1 

y2G(1, y) + 1/4[ln(1 -- y) + y] = 6y 2 f ~2G(~, y) d~ 
/2 

which is a connection between G(1, y) and G(~, y') for 1/2 ~< ~ ~ 1 and 
0 ~ y '  ~ y. Another condition, determined from the cycle equation, ~l,s) 
is Gz(y) = 0. 2 The application of these conditions in the determination of  
the equation of state from Eqs. (2) and (3) is fully described in Ref. 1. 

Later it was determined that the thermodynamic variables relevant to 
curved boundary layers are related to G through the exact thermodynamic 
equation (3) 

yG(~, y) = r  + [cr(~, y)/u(~, y)] (9) 

where ua is the location of the SOT and 3kTc;/Tra 2 is the associated boundary 
tension. These same thermodynamic variables are also related through a 
boundary analog of the Gibbs-Tolman-Koenig-Buff  equation, ~2~ 

(&r/~)~ + gp = qSq (10) 

and 

~2G(1/2, y) 24y 72y 2 48y G(1, y) (6) 
e~ 2 - ( 1 - y ) 2 +  ( 1 - y ) ~  1 - y  

at ~ = 1/2; 
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would involve the introduction of the location of the equimolecular dividing 
surface and the density derivatives of ~, a, and u as additional unknowns. 

In the next section, an approximate expression for the location of the 
SOT is used in conjunction with Eqs. (9) and (10) to determine G(~, y) and 
hence provide an alternative to Eq. (2) in the determination of the hard- 
sphere equation of state. In addition, the boundary tension associated with 
the SOT and its location, consistent with the equation of state, are determined 
as functions of density and cavity radius. In the third section, the hard- 
sphere equation of state obtained by the approximation for the location of 
the SOT is conpared with those obtained from Eq. (2). 

2. T H E  H A R D - S P H E R E  E Q U A T I O N  O F  S T A T E  

It should be noted that if the dependence of the location of the SOT on 
cavity radius were known, the boundary tension could be determined exactly 
from Eq. (10) by using Eq. (9) and one of Eqs. (3)-(8) to eliminate G as the 
required boundary condition on the boundary tension. One could then use 
Eq. (9) for G and hence determine the equation of state directly from Eq. (3). 
Since the dependence of the location of the SOT on cavity radius is not 
known, this straightforward approach is not possible. Instead, we assume 
the location of the SOT can be represented as a power series of the form 

where 

u(5 y) = i + ~(~, y) (13) 

3(~,y) = ~ a n ( y ) ( ~ -  1) " (14) 
~z~0 

is the distance between the cavity surface and the SOT. The y-dependent 
terms {an} are treated as unknown parameters, so that cr(~, y) from Eq. (I0) 
is determined in terms of the {a~} subject to the boundary condition obtained 
by eliminating G(I/2, y) from Eqs. (4) and (9). As previously mentioned, 
other boundary conditions are possible, but the indicated choice turns out to 
be the most convenient for computation. We now have an expression for G 
in terms of the unknown coefficients {an}. This expression for G is then used 
to eliminate G from the remaining exact conditions and hence determine 
an approximate hard-sphere equation of state. This method was originally 
used with Eq. (14) in the form (3) 

= 0 (15) 

i.e., the SOT and the cavity surface are coincident, subject to Eqs. (3) and (4). 
Later, the method was used again in the form (4) 

8 = at(Y) (16) 
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i.e., the surface of tension and the cavity surface are separated by a distance 
that is a function of the fluid density alone, subject to Eqs. (3-5). Since 
Eq. (16) leads to a more accurate equation of state than does Eq. (15), it is 
desirable to fully test Eq. (14) with as many coefficients as scaled particle 
theory will permit. 

We now use our expression for G in terms of the {a~} to eliminate G from 
Eq. (3), 

q~ = [y/(1 -- 4y)][1 q- (4e/u)]l~=~ (17) 

from Eq. (5). 

~ ( O u / a r  = [ 6 y 2 u / ( 1  - -  y)2] § [ y ( ~ u / O ~ ) / ( 1  - -  y)] -- (O~/~)]~=z/~ (18) 

from Eq. (6), 

4~ = [(1 -- y ) / 1 2 ] { [ 2 4 y ~ / ( 1  - -  y)~] + [ 7 2 y 3 / ( 1  - -  y)3] + [ 1 2 2 / ( 1  - -  y)] 

- ( 1 / u ) ( ~ , ; / ~ r  ~) + ( 2 / u ~ ) ( ~ u / O ~ ) ( ~ / ~ r  

- (2,~/u3)(~u/~r ~ + ( ,~/u~)(~u/~r (2o) 

and from Eq. (8), 

= --log(1 -- y) q- 24y fl z/2 ~ [4(Y) -k u(~,cr(~' y)y___~.] d~ 

1 ~ Y') ] d~ -- 24 fofdY' fl,2~2[O(Y')+ ~(~,~r~ "] (20) 

"~ qp 
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Fzo. 1. Percent deviation from exact hard-sphere equation of state as a 
function of density y. Curve 1, this paper; curves C, D, and E, Ref. 1. 
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Equation (4) has already been used as a boundary condition for the inte- 
gration of Eq. (10); and Eq. (7), which includes terms at infinite radius, is 
inappropriate for the assumption of Eq. (14), whose approximate validity 
is probably, at best, limited to a small range of cavity radius. Each of 
Eqs. (I7)-20) must give the same pressure so that we can form a system of 
equations of the form (A q~ = 0, i = 1, 2, 3, where the only unknowns are 
the {an}. It is now clear that we are limited to three terms in the expansion 
of 3(~, y) in Eq. (14). These three unknowns are determined as functions of 
of fluid density by the Newton-Raphson method ~6~ and then used to calculate 
the pressure (shown in curve 1 of Fig. 1 as the percent deviation from the 
exact hard-sphere equation of state(7)); and the boundary tension associated 
with the SOT and the distance between the SOT and the cavity surface, both 
as functions of cavity radius and fluid density (shown in Figs. 2 and 3, 
respectively, for several values of the density as a function of cavity radius). 

3. C O M P A R I S O N  O F  M E T H O D S  A N D  C O N C L U S I O N S  

The curves labeled C, D, and E (designated as in Ref. 1) represent the 
equations of state obtained from the assumption of Eq. (2). Each uses four 
terms in the expansion of G, with G3 = 0, and Eqs. (3)-(5). In addition, C uses 
Eqs Eqs. (7) and (8), D uses Eqs. (6) and (7), and E uses Eqs. (6) an (7), 
G4 = 0. The motivation for each of these choices is described in Ref. 1. 
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Fig. 2. The boundary tension associated with 
the surface of tension a as a function of cavity 
radius ~ for several fluid densities y. 
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As shown in Fig. 1, each of the equations--C, D, and E--gives a more 
accurate equation of state than does the assumption of Eq. (14) using 
Eqs. (3)-(6) and (8), in spite of the fact that the assumption of Eq. (14) allows 
us to use all five of the known scaled particle theory conditions valid for 
1/2 ~< ~ ~< 1; while each of C, D, and Euses only four of the five. Therefore, 
as expected, Eq. (14) with the first three coefficients and Eqs. (3)-(6) and (8) 
gives a better equation of state than the assumption of Eq. (16); but the 
improvement is not sufficient to surpass C, D, and E. The present results are 
however, significant since the path to a more improved theory is now well 
defined, contingent on the discovery of additional exact conditions. This 
limits assumptions concerning the form of G to the form of a small quantity 
and allows the use of the five exact conditions which do not require the 
introduction of another unknown. 

These results lead to the conclusion that a quadratic representation of 
the location of the SOT is not sufficient to characterize its dependence on 
the cavity radius for radii between one-half and one molecular diameter, i.e., 
cavities of molecular dimension. The insufficiency of the quadratic represen- 
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Fig. 3. The distance between the cavity surface 
and the surface of tension ~ as a function of cavity 
radius ~ for several fluid densities y. 
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tation is indicated in Fig. 3, where the location of the mechanically equivalent 
SOT is within the cavity for ~ > 1.3. Intuitively one feels that the surface 
mechanically equivalent to the transition layer lies within the fluid. 

The assumption of Eq. (2) is sometimes described as an extrapolation 
of a macroscopic equation into a microscopic regime. Equation (14) does 
not involve this extrapolation, but it is physically reasonable to expect that 
in the limit of large cavities, the distance between the cavity and the SOT 
could be represented as 

a(~, y) = bo(y) + [bl(y)/~l + [b2(y)/~ 2] + " (21) 

in which case the use of Eq. (21) for 1/2 ~< ~ ~ 1 would involve the extra- 
polation of a macroscopic equation into a microscopic regime. When this 
approach is tried, the numerical procedure that led to curve 1 of Fig. 1 and 
to the curves of Figs. 2 and 3 diverges, and we have not yet been able to devise 
a convenient program for handling Eq. (21). This could form the subject 
of further investigation. 

A second numerical difficulty concerns the existence of a second iso- 
therm possibly corresponding to the solid phase. A previous calculation 181 
based on Eq. (15) shows that the equation of state has a singularity at y -~ 1/2 
and an indication of solidlike behavior for y > 1/2. A second calculation ~4) 
based on Eq. (16) confirmed the solidlike behavior and gave a qualitatively 
correct solid isotherm. This solid isotherm was not quantitatively correct and 
did not predict the solid-fluid phase transition. This second calculation was 
based on a one-dimensional search procedure generalized to three dimensions 
in order to obtain the three coefficients of Eq. (14) referring to the solid. This 
three-dimensional search procedure, when applied to our set of equations, 
(A r = 0, i = 1, 2, 3, became prohibitive due to the complexity of Eq. (20) 
and the fineness of the grid required to locate additional solutions. This 
difficulty is a consequence of the unknown behavior of ~(~, y) for the solid 
as its density approaches zero. The unknown behavior makes the three- 
dimensional search procedure necessary and does not allow the use of the 
Newton-Raphson technique since, as applied to the fluid, the starting value 
of ~(~, 0) = 0, or a0 = al = a2 = 0, is required. Therefore, the straight- 
forward approach described here is incapable of obtaining the solution 
pertaining to the solid, so that the existence of a solid-fluid phase transition, 
as predicted by scaled particle theory, remains an open question. 
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